Площадь многоугольника равна его периметру. Площадь многоугольника через радиус вписанной окружности. Формула площади многоугольника через радиус вписанной окружности

  • обучающие: научить учащихся находить площадь многоугольника, используя выбранные ими способы, сформировать начальные представления
  • многоугольнике, графические и измерительные навыки;
  • развивающие: развитие способов умственной деятельности учащихся при выполнении заданий от наблюдения, расчетов до выяснения закономерностей вычисления площади многоугольника;
  • воспитывающие: раскрытие субъективного опыта учащихся, поощрение действий, стремлений учащихся как основы воспитания положительных качеств личности;
  • методическая: создание условий для проявления познавательной активности учащихся.

Оснащение урока:

  1. Оформление доски: слева - фигуры многоугольника, справа - чистое полотно доски для записи на уроке, в центре – многоугольник-прямоугольник.
  2. Листок “К исследованию”.
  3. Инструментарии учителя и учащихся (мел, указка, линейка, листок исследования, фигуры, ватман, маркер).

Метод урока:

  • По взаимодействию учителя и учащихся – диалог-общение;
  • По способу решения задач – частично-поисковый;
  • По способу умственной деятельности - (СУД) развивающее обучение.

Форма урока - фронтальная, в парах, индивидуальная.

Тип урока - урок усвоения новых знаний, умений и навыков.

Структура урока - постепенное углубление в тему, гибкая, диалогическая.

Ход урока

Приветствие.

Урок прекрасен и приносит радость, когда мы мыслим, дружно работаем. Сегодня мы будем рассматривать фигуры, определять их названия, думать, искать и находить решения. Пожелаем друг другу успешной работы.

Актуализация знаний.

Рассмотрите фигуры (на доске многоугольники).

Они все вместе. Почему? Какой у них общий признак? (Многоугольники).

Назовите этот многоугольник (5-угольник, 6-угольник…)

Может быть, вы знаете, что такое площадь многоугольника?

Тогда покажите на одной из фигур.

(Обобщение учителем: площадь - часть плоскости внутри замкнутой геометрической фигуры.)

В русском языке это слово имеет несколько значений.

(Ученик по словарю знакомит со значениями.)

  1. Часть плоскости внутри замкнутой геометрической фигуры.
  2. Большое незастроенное и ровное место.
  3. Помещение для какой-либо цели.

Какое из значений используется в математике?

В математике используется первое значение.

(На доске фигура).

Это многоугольник? Да.

Назовите фигуру по-другому. Прямоугольник.

Покажи длину, ширину.

Как найти площадь многоугольника?

Запишите при помощи букв и знаков формулу.

Если длина нашего прямоугольника 20 см, ширина 10см. Чему равна площадь?

Площадь равна 200 см 2

Подумайте, как приложить линейку, чтобы фигура разделилась на:

Увидели, из каких частей состоит фигура? А теперь, наоборот, по частям соберем целое.

(Части фигуры лежат на партах. Дети собирают из них прямоугольник).

Сделайте вывод по наблюдениям.

Целую фигуру можно разделить на части и из частей составить целую.

Дома на основе треугольников и четырехугольников составляли фигуры, силуэты. Вот какие они получились.

(Демонстрация рисунков, выполненных дома учащимися. Одна из работ анализируется).

Какие фигуры использовал? У тебя получился сложный многоугольник.

Постановка учебной задачи.

На уроке мы должны ответить на вопрос: как найти площадь сложного многоугольника?

Для чего человеку нужно находить площадь?

(Ответы детей и обобщение учителем).

Задача определения площади возникла из практики.

(Показывается план школьного участка).

Для того чтобы построить школу, сначала создали план. Потом разбивалась территория на участки определенной площади, размещались строения, клумбы, стадион. При этом участок имеет определенную форму - форму многоугольника.

Решение учебной задачи.

(Раздаются листы для исследования).

Перед вами фигура. Назовите ее.

Многоугольник, шестиугольник.

Найдем площадь многоугольника. Что для этого надо делать?

Разделить на прямоугольники.

(При затруднении будет другой вопрос: “Из каких фигур состоит многоугольник?”).

Из двух прямоугольников.

С помощью линейки и карандаша разделите фигуру на прямоугольники. Обозначьте цифрами 1 и 2 полученные части.

Проведем измерения.

Найдем площадь первой фигуры.

(Учащиеся предлагают следующие варианты решений и записывают их на доске).

  • S 1 = 5 ? 2 = 10 см 2
  • S 2 = 5 ? 1 = 5 см 2

Зная площадь частей, как найти площадь целой фигуры?

S = 10 + 5 = 15 см 2

  • S 1 = 6 ? 2 = 12 см 2
  • S 2 = 3 ? 1 = 3 см 2
  • S = 12 + 3 = 15 см 2 .

Сравните результаты и сделайте вывод.

Проследим наши действия

Как находили площадь многоугольника?

Составляется и записывается на плакате алгоритм:?

1. Делим фигуру на части

2. Находим площади частей этих многоугольников (S 1 , S 2).

3. Находим площадь целого многоугольника (S 1 + S 2).

Проговорить алгоритм.

(Несколько учащихся проговаривают алгоритм).

Мы нашли два способа, а может, есть еще?

А можно фигуру достроить.

Сколько прямоугольников получилось?

Обозначим части 1 и 2. Проведем измерения.

Найдите площадь каждой части многоугольника.

  • S 1= 6? 5=30см 2
  • S 2 = 5 ? 3 = 15 см 2

Как найти площадь нашего шестиугольника?

S = 30 – 15 = 15 см 2

Составим алгоритм:

Достроили фигуру до прямоугольника

Нашли S 1 и S 2 .

Нашли разность S 1 – S 2 .

Сравните два алгоритма. Сделайте вывод. Какие действия одинаковые? Где разошлись наши действия?

Закройте глазки, опустите головки. Мысленно повторите алгоритм.

Мы провели исследовательскую работу, рассмотрели разные способы и теперь можем находить площадь любого многоугольника.

Проверка результативности.

Проверьте себя.

Перед вами многоугольники.

Найти площадь одной фигуры по выбору, при этом можете пользоваться разными способами.

Работа выполняется самостоятельно. Дети выбирают фигуру. Находят площадь одним из способов. Проверка – ключ на доске.


Что можно сказать о форме? (Форма разная)

А какова площадь этих многоугольников? (Площади этих многоугольников равны)

Оценивают результаты.

У кого правильно – поставь “+”.

У кого сомнения, затруднения – “?”

Консультанты оказывают помощь ребятам, ищут ошибки, помогают исправить.

Домашнее задание:

Составить свои листки исследования, вычислить площадь многоугольника разными способами.

Итог урока.

Итак, ребята, что вы расскажите родителям, о том как найти площадь геометрической фигуры – многоугольника.

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Решения многих задач вычислительной геометрии основывается на нахождении площади многоугольника . На этом уроке мы выведем формулу для вычисления площади многоугольника через координаты его вершин, напишем функцию для вычисления этой площади.

Задача. Вычислить площадь многоугольника , заданного координатами своих вершин, в порядке их обхода по часовой стрелке.

Сведения из вычислительной геометрии

Для вывода формулы площади многоугольника нам понадобятся сведения из вычислительной геометрии, а именно, понятие ориентированной площади треугольника.

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами и. То есть ее знак зависит от порядка перечисления вершин.

На рис. 1 треугольник АВС – прямоугольный. Его ориентированная площадь равна (она больше нуля, так как пара, ориентирована положительно). Эту же величину можно вычислить другим способом.

Пусть О – произвольная точка плоскости. На нашем рисунке площадь треугольника ABC получится, если из площади треугольника OBC вычесть площади OAB и OCA. Таким образом, нужно просто сложить ориентированные площади треугольников OAB, OBC и OCA. Это правило работает при любом выборе точки О .

Точно так же для вычисления площади любого многоугольника нужно сложить ориентированные площади треугольников

В сумме получится площадь многоугольника, взятая со знаком плюс, если при обходе ломаной многоугольника находится слева (обход границы против часовой стрелки), и со знаком минус, если он находится справа (обход по часовой стрелке).

Итак, вычисление площади многоугольника свелось к нахождению площади треугольника. Посмотрим, как выразить ее в координатах.

Векторное произведение двух векторов на плоскости есть площадь параллелограмма, построенного на этих векторах.

Векторное произведение, выраженное через координаты векторов:

Если координаты вершин были заданы в порядке обхода против часовой стрелки, то число S, вычисленное по этой формуле, получится положительным. В противном случае оно будет отрицательным, и для получения обычной геометрической площади нам необхо­димо взять его абсолютное значение.

Итак, рассмотрим программу для нахождения площади многоугольника, заданного координатами вершин.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a^2\) .

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\) .

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\) , как показано на рисунке:

Данный квадрат состоит из прямоугольника \(ABCD\) , еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\) . Таким образом,

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow (a+b)^2=2S_{\text{пр-к}}+a^2+b^2 \Leftrightarrow\\ a^2+2ab+b^2=2S_{\text{пр-к}}+a^2+b^2 \Rightarrow S_{\text{пр-к}}=ab \end{multline*}\)

Определение

Высота параллелограмма - это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\) , а высота \(BH\) - на продолжение стороны \(CD\) :



Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры \(AB"\) и \(DC"\) , как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\) .



Тогда \(AB"C"D\) – прямоугольник, следовательно, \(S_{AB"C"D}=AB"\cdot AD\) .

Заметим, что прямоугольные треугольники \(ABB"\) и \(DCC"\) равны. Таким образом,

\(S_{ABCD}=S_{ABC"D}+S_{DCC"}=S_{ABC"D}+S_{ABB"}=S_{AB"C"D}=AB"\cdot AD.\)

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\) . Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\) . Докажем, что \ Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:


Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\)), поэтому их площади равны. Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\) , то есть \(S = \dfrac{1}{2}AB\cdot CH\) .

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.



Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.


Доказательство

Пусть \(\angle A=\angle A_2\) . Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\)):


Проведем высоты \(BH\) и \(C_2K\) .

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\) , следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\]

Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\) , следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или } \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdot A_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:



Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\) , \(b\) , \(c\) – длины его сторон, тогда его площадь равна \

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник \(ABCD\) . Обозначим \(AO=a, CO=b, BO=x, DO=y\) :



Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников , следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*} S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\ \frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\) . Проведем \(CD"\parallel AB\) , как показано на рисунке:



Тогда \(ABCD"\) – параллелограмм.

Проведем также \(BH"\perp AD, CH\perp AD\) (\(BH"=CH\) – высоты трапеции).

Тогда \(S_{ABCD"}=BH"\cdot AD"=BH"\cdot BC, \quad S_{CDD"}=\dfrac12CH\cdot D"D\)

Т.к. трапеция состоит из параллелограмма \(ABCD"\) и треугольника \(CDD"\) , то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\ \[=\dfrac12 CH\left(BC+AD"+D"D\right)=\dfrac12 CH\left(BC+AD\right)\]

Каждый, кто изучал в школе математику и геометрию, хотя бы поверхностно знает эти науки. Но со временем, если в них не практиковаться, познания забываются. Многие даже считают, что только зря потратили своё время, изучая геометрические расчёты. Однако они ошибаются. Технические работники выполняют повседневную работу, связанную с геометрическими расчётами. Что касается расчета площади многоугольника, то и эти знания находят своё применение в жизни. Понадобятся они хотя бы для того, чтобы рассчитать площадь земельного участка . Итак, давайте узнаем, как найти площадь многоугольника.

Определение многоугольника

Сначала определимся с тем, что такое многоугольник. Это плоская геометрическая фигура, которая образовалась в результате пересечения трех или более прямых. Другое простое определение: многоугольник - это замкнутая ломаная. Естественно, при пересечении прямых образуются точки пересечения, их количество равно количеству прямых, образовывающих многоугольник. Точки пересечения называют вершинами, а отрезки, образованные от прямых, - сторонами многоугольника. Смежные отрезки многоугольника находятся не на одной прямой. Отрезки, являющиеся несмежными, - это те, которые не проходят через общие точки.

Сумма площадей треугольников

Как находить площадь многоугольника? Площадь многоугольника - это внутренняя часть плоскости, которая образовалась при пересечении отрезков или сторон многоугольника. Поскольку многоугольник - это сочетание таких фигур, как треугольник, ромб, квадрат, трапеция, то универсальной формулы для вычисления его площади просто нет. На практике наиболее универсальным является метод разбиения многоугольника на более простые фигуры, нахождение площади которых не вызывают затруднений. Сложив суммы площадей этих простых фигур , получают площадь многоугольника.

Через площадь окружности

В большинстве случаев многоугольник имеет правильную форму и образует фигуру с равными сторонами и углами между ними. Рассчитать площадь в этом случае очень просто при помощи вписанной или описанной окружности. Если известна площадь окружности, то её необходимо умножить на периметр многоугольника, а затем полученное произведение поделить на 2. В итоге получается формула расчёта площади такого многоугольника: S = ½∙P∙r., где P - площадь окружности, а r - периметр многоугольника.

Метод разбиения многоугольника на «удобные» фигуры - самый популярный в геометрии, он позволяет быстро и правильно найти площадь многоугольника. 4 класс средней школы обычно изучает такие методы.

Площадь, одна из основных величин, связанных с геометрическими фигурами . В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

У этого термина существуют и другие значения, см. Площадь (значения). Площадь плоской фигуры аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное… … Википедия

I Площадь одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П.… … Большая советская энциклопедия

У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Ж. 1. Часть земной поверхности , пространство, естественно ограниченное или специально выделенное для какой либо цели. отт. Водное пространство. отт. Большое, ровное место, пространство. 2. Ровное незастроенное пространство общественного… … Современный толковый словарь русского языка Ефремовой

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 сентября 2012. Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует… … Википедия

Две фигуры в R2, имеющие равные площади и соответственно два многоугольника M1 и М 2 такие, что их можно разрезать на многоугольники так, что части, составляющие М 1, соответственно конгруэнтны частям, составляющим М 2. Для, равновеликость… … Математическая энциклопедия

В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

У этого термина существуют и другие значения, см. Теорема Пика. В = 7, Г = 8, В + Г/2 − 1 = 10 Формула Пика (или теорема Пика) классический результат комбинаторной геометрии и геометрии чисел. Площадь … Википедия

Область (связное открытое множество) на границе выпуклого тела в евклидовом пространстве Е 3. Вся граница выпуклого тела наз. полной В. п. Если тело конечно, то полная В. п. наз. замкнутой. Если тело бесконечно, то полная В. п. наз. бесконечной.… … Математическая энциклопедия

\[{\Large{\text{Основные факты о площади}}}\]

Можно сказать, что площадь многоугольника - это величина, обозначающая часть плоскости, которую занимает данный многоугольник. За единицу измерения площади принимают площадь квадрата со стороной \(1\) см, \(1\) мм и т.д. (единичный квадрат). Тогда площадь будет измеряться в см\(^2\) , мм\(^2\) соответственно.

Иными словами, можно сказать, что площадь фигуры - это величина, численное значение которой показывает, сколько раз единичный квадрат умещается в данной фигуре.

Свойства площади

1. Площадь любого многоугольника - величина положительная.

2. Равные многоугольники имеют равные площади.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a^2\) .

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\) .

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\) , как показано на рисунке:

Данный квадрат состоит из прямоугольника \(ABCD\) , еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\) . Таким образом,

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow (a+b)^2=2S_{\text{пр-к}}+a^2+b^2 \Leftrightarrow\\ a^2+2ab+b^2=2S_{\text{пр-к}}+a^2+b^2 \Rightarrow S_{\text{пр-к}}=ab \end{multline*}\)

Определение

Высота параллелограмма - это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\) , а высота \(BH\) - на продолжение стороны \(CD\) :


Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры \(AB"\) и \(DC"\) , как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\) .


Тогда \(AB"C"D\) – прямоугольник, следовательно, \(S_{AB"C"D}=AB"\cdot AD\) .

Заметим, что прямоугольные треугольники \(ABB"\) и \(DCC"\) равны. Таким образом,

\(S_{ABCD}=S_{ABC"D}+S_{DCC"}=S_{ABC"D}+S_{ABB"}=S_{AB"C"D}=AB"\cdot AD.\)

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\) . Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\) . Докажем, что \ Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:

Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\) ), поэтому их площади равны. Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\) , то есть \(S = \dfrac{1}{2}AB\cdot CH\) .

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.


Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

Доказательство

Пусть \(\angle A=\angle A_2\) . Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\) ):


Проведем высоты \(BH\) и \(C_2K\) .

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\) , следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\]

Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\) , следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или } \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdot A_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:


Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\) , \(b\) , \(c\) – длины его сторон, тогда его площадь равна \

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник \(ABCD\) . Обозначим \(AO=a, CO=b, BO=x, DO=y\) :


Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*} S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\ \frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\) . Проведем \(CD"\parallel AB\) , как показано на рисунке:


Тогда \(ABCD"\) – параллелограмм.

Проведем также \(BH"\perp AD, CH\perp AD\) (\(BH"=CH\) – высоты трапеции).

Тогда \(S_{ABCD"}=BH"\cdot AD"=BH"\cdot BC, \quad S_{CDD"}=\dfrac12CH\cdot D"D\)

Т.к. трапеция состоит из параллелограмма \(ABCD"\) и треугольника \(CDD"\) , то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\ \[=\dfrac12 CH\left(BC+AD"+D"D\right)=\dfrac12 CH\left(BC+AD\right)\]

  • обучающие: научить учащихся находить площадь многоугольника, используя выбранные ими способы, сформировать начальные представления
  • многоугольнике, графические и измерительные навыки;
  • развивающие: развитие способов умственной деятельности учащихся при выполнении заданий от наблюдения, расчетов до выяснения закономерностей вычисления площади многоугольника;
  • воспитывающие: раскрытие субъективного опыта учащихся, поощрение действий, стремлений учащихся как основы воспитания положительных качеств личности;
  • методическая: создание условий для проявления познавательной активности учащихся.

Оснащение урока:

  1. Оформление доски: слева - фигуры многоугольника, справа - чистое полотно доски для записи на уроке, в центре – многоугольник-прямоугольник.
  2. Листок “К исследованию”.
  3. Инструментарии учителя и учащихся (мел, указка, линейка, листок исследования, фигуры, ватман, маркер).

Метод урока:

  • По взаимодействию учителя и учащихся – диалог-общение;
  • По способу решения задач – частично-поисковый;
  • По способу умственной деятельности - (СУД) развивающее обучение.

Форма урока - фронтальная, в парах, индивидуальная.

Тип урока - урок усвоения новых знаний, умений и навыков.

Структура урока - постепенное углубление в тему, гибкая, диалогическая.

Ход урока

Приветствие.

Урок прекрасен и приносит радость, когда мы мыслим, дружно работаем. Сегодня мы будем рассматривать фигуры, определять их названия, думать, искать и находить решения. Пожелаем друг другу успешной работы.

Актуализация знаний.

Рассмотрите фигуры (на доске многоугольники).

Они все вместе. Почему? Какой у них общий признак? (Многоугольники).

Назовите этот многоугольник (5-угольник, 6-угольник…)

Может быть, вы знаете, что такое площадь многоугольника?

Тогда покажите на одной из фигур.

(Обобщение учителем: площадь - часть плоскости внутри замкнутой геометрической фигуры.)

В русском языке это слово имеет несколько значений.

(Ученик по словарю знакомит со значениями.)

  1. Часть плоскости внутри замкнутой геометрической фигуры.
  2. Большое незастроенное и ровное место.
  3. Помещение для какой-либо цели.

Какое из значений используется в математике?

В математике используется первое значение.

(На доске фигура).

Это многоугольник? Да.

Назовите фигуру по-другому. Прямоугольник.

Покажи длину, ширину.

Как найти площадь многоугольника?

Запишите при помощи букв и знаков формулу.

Если длина нашего прямоугольника 20 см, ширина 10см. Чему равна площадь?

Площадь равна 200 см 2

Подумайте, как приложить линейку, чтобы фигура разделилась на:

Увидели, из каких частей состоит фигура? А теперь, наоборот, по частям соберем целое.

(Части фигуры лежат на партах. Дети собирают из них прямоугольник).

Сделайте вывод по наблюдениям.

Целую фигуру можно разделить на части и из частей составить целую.

Дома на основе треугольников и четырехугольников составляли фигуры, силуэты. Вот какие они получились.

(Демонстрация рисунков, выполненных дома учащимися. Одна из работ анализируется).

Какие фигуры использовал? У тебя получился сложный многоугольник.

Постановка учебной задачи.

На уроке мы должны ответить на вопрос: как найти площадь сложного многоугольника?

Для чего человеку нужно находить площадь?

(Ответы детей и обобщение учителем).

Задача определения площади возникла из практики.

(Показывается план школьного участка).

Для того чтобы построить школу, сначала создали план. Потом разбивалась территория на участки определенной площади, размещались строения, клумбы, стадион. При этом участок имеет определенную форму - форму многоугольника.

Решение учебной задачи.

(Раздаются листы для исследования).

Перед вами фигура. Назовите ее.

Многоугольник, шестиугольник.

Найдем площадь многоугольника. Что для этого надо делать?

Разделить на прямоугольники.

(При затруднении будет другой вопрос: “Из каких фигур состоит многоугольник?”).

Из двух прямоугольников.

С помощью линейки и карандаша разделите фигуру на прямоугольники. Обозначьте цифрами 1 и 2 полученные части.

Проведем измерения.

Найдем площадь первой фигуры.

(Учащиеся предлагают следующие варианты решений и записывают их на доске).

  • S 1 = 5 ? 2 = 10 см 2
  • S 2 = 5 ? 1 = 5 см 2

Зная площадь частей, как найти площадь целой фигуры?

S = 10 + 5 = 15 см 2

  • S 1 = 6 ? 2 = 12 см 2
  • S 2 = 3 ? 1 = 3 см 2
  • S = 12 + 3 = 15 см 2 .

Сравните результаты и сделайте вывод.

Проследим наши действия

Как находили площадь многоугольника?

Составляется и записывается на плакате алгоритм:?

1. Делим фигуру на части

2. Находим площади частей этих многоугольников (S 1 , S 2).

3. Находим площадь целого многоугольника (S 1 + S 2).

Проговорить алгоритм.

(Несколько учащихся проговаривают алгоритм).

Мы нашли два способа, а может, есть еще?

А можно фигуру достроить.

Сколько прямоугольников получилось?

Обозначим части 1 и 2. Проведем измерения.

Найдите площадь каждой части многоугольника.

  • S 1= 6? 5=30см 2
  • S 2 = 5 ? 3 = 15 см 2

Как найти площадь нашего шестиугольника?

S = 30 – 15 = 15 см 2

Составим алгоритм:

Достроили фигуру до прямоугольника

Нашли S 1 и S 2 .

Нашли разность S 1 – S 2 .

Сравните два алгоритма. Сделайте вывод. Какие действия одинаковые? Где разошлись наши действия?

Закройте глазки, опустите головки. Мысленно повторите алгоритм.

Мы провели исследовательскую работу, рассмотрели разные способы и теперь можем находить площадь любого многоугольника.

Проверка результативности.

Проверьте себя.

Перед вами многоугольники.

Найти площадь одной фигуры по выбору, при этом можете пользоваться разными способами.

Работа выполняется самостоятельно. Дети выбирают фигуру. Находят площадь одним из способов. Проверка – ключ на доске.

Что можно сказать о форме? (Форма разная)

А какова площадь этих многоугольников? (Площади этих многоугольников равны)

Оценивают результаты.

У кого правильно – поставь “+”.

У кого сомнения, затруднения – “?”

Консультанты оказывают помощь ребятам, ищут ошибки, помогают исправить.

Домашнее задание:

Составить свои листки исследования, вычислить площадь многоугольника разными способами.

Итог урока.

Итак, ребята, что вы расскажите родителям, о том как найти площадь геометрической фигуры – многоугольника.

Многоугольник – это плоская или выпуклая фигура, которая состоит из пересеченных прямых (больше 3-х) и образует большое количество точек пересечения линий. Еще многоугольник можно определить как ломаную линию, которая замыкается. По-другому точки пересечения можно назвать вершинами фигуры. В зависимости от количества вершин фигура может называться пятиугольником, шестиугольником и так далее. Угол многоугольника – это угол, который образовывается сторонами, сходящимися в одной вершине. Угол находится внутри многоугольника. Причем углы могут быть разными, вплоть до 180 градусов. Есть также и внешние углы, которые обычно являются смежными внутренним.

Прямые линии, которые впоследствии пересекаются, называются сторонами многоугольника. Они могут быть соседними, смежными и не смежными. Очень важной характеристикой представленной геометрической фигуры является то, что несмежные ее стороны не пересекаются, а значит, не имеют общих точек. Смежные стороны фигуры не могут находиться на одной прямой.

Те вершины фигуры, которые принадлежат одной и той же прямой, можно назвать соседними. Если провести линию между двумя вершинами, не являющимися соседними, то получится диагональ многоугольника. Что касается площади фигуры, — это внутренняя часть плоскости геометрической фигуры с большим количеством вершин, которая создается разделяющими ее отрезками многоугольника.


Какого-либо одного решения для определения площади представленной геометрической фигуры нет, так как вариантов фигуры может быть бесконечное множество и для каждого варианта существует свое решение. Однако некоторые самые частые варианты нахождения площади фигуры все же нужно рассмотреть (они чаще всего используются на практике и включены даже в школьную программу).

Прежде всего, рассмотрим правильный многоугольник, то есть такую фигуру, в которой все углы, образованные равными сторонами, являются также равными. Итак, как найти площадь многоугольника в конкретном примере? Для этого случая нахождение площади многоугольной фигуры возможно, если дан радиус окружности, вписанной в фигуру или описанной вокруг нее. Для этого можно воспользоваться следующей формулой:

S = ½∙P∙r, где r – радиус окружности (вписанной или описанной), а P – является периметром геометрической многоугольной фигуры, которую можно узнать, умножив количество сторон фигуры на их длину.

Как находить площадь многоугольника

Чтобы ответить на вопрос, как находить площадь многоугольника, достаточно следовать следующему интересному свойству многоугольной фигуры, в свое время нашел известный австрийский математик – Георг Пик. Например, по формуле S = N + M/2 -1 можно найти площадь такого многоугольника, вершины которого размещены в узлах квадратной сетки. При этом S – это, соответственно, площадь; N – количество узлов квадратной сетки, которые разместились внутри фигуры с множеством углов; M – количество тех узлов квадратной сетки, которые разместились на вершинах и сторонах многоугольника. Однако, несмотря на свою красоту, формула Пика практически не применяется в практической геометрии.

Самым простым и известным методом определения площади, который изучают в школе, является разделение многоугольной геометрической фигуры на более простые части (трапеции, прямоугольники, треугольники). Найти площадь этих фигур не трудно. В этом случае площадь многоугольника определяется просто: нужно найти площади всех тех фигур, на которые разделен многоугольник.

В основном определение площади многоугольника определяется в механике (размеры деталей).

1.1 Вычисление площадей в древности

1.2 Различные подходы к изучению понятий «площадь», «многоугольник», «площадь многоугольника»

1.2.1 Понятие о площади. Свойства площади

1.2.2 Понятие о многоугольнике

1.2.3 Понятие о площади многоугольника. Дескриптивное определение

1.3 Различные формулы площадей многоугольников

1.4 Вывод формул площадей многоугольников

1.4.1 Площадь треугольника. Формула Герона

1.4.2 Площадь прямоугольника

1.4.3 Площадь трапеции

1.4.4 Площадь четырёхугольника

1.4.5 Универсальная формула

1.4.6 Площадь n-угольника

1.4.7 Вычисление площади многоугольника по координатам его вершин

1.4.8 Формула Пика

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

1.6 Равносоставленность треугольников. Теорема Больяя-Гервина

1.7 Отношение площадей подобных треугольников

1.8 Фигуры с наибольшей площадью

1.8.1 Трапеция или прямоугольник

1.8.2 Замечательное свойство квадрата

1.8.3 Участки другой формы

1.8.4 Треугольник с наибольшей площадью

Глава 2. Методические особенности изучения площадей многоугольников в математических классах

2.1 Тематическое планирование и особенности преподавания в классах с углубленным изучением математики

2.2 Методика проведения уроков

2.3 Результаты опытно-экспериментальной работы

Заключение

Литература

Введение

Тема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.

Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования.

Наряду с решением основной задачи углубленное изучение математики предусматривает формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе.

Квалификационная работа включает содержание курса математики общеобразовательной школы и ряд дополнительных вопросов, непосредственно примыкающих к этому курсу и углубляющих его по основным идейным линиям.

Включение дополнительных вопросов преследует две взаимосвязанные цели. С одной стороны, это создание в совокупности с основными разделами курса базы для удовлетворения интересов и развития способностей учащихся, имеющих склонность к математике, с другой – выполнение содержательных пробелов основного курса, придающее содержанию углубленного изучения необходимую целостность.

Квалификационная работа состоит из введения, двух глав, заключения и цитируемой литературы. В первой главе рассматриваются теоретические основы изучения площадей многоугольников, а во второй главе – непосредственно уже методические особенности изучения площадей.

Глава 1. Теоретические основы изучения площадей многоугольников

1.1Вычисление площадей в древности

Зачатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.

Еще в 4 – 5 тысяч лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служит эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, или можно заполнить плоскость без пробелов.

В древнем Китае мерой площади был прямоугольник. Когда каменщики определяли площадь прямоугольной стены дома, они перемножали высоту и ширину стены. Таково принятое в геометрии определение: площадь прямоугольника равна произведению его смежных сторон. Обе эти стороны должны быть выражены в одних и тех же линейных единицах. Их произведение и составит площадь прямоугольника, выраженную в соответствующих квадратных единицах. Скажем, если высота и ширина стены измерены в дециметрах, то произведение обоих измерений будет выражено в квадратных дециметрах. И если площадь каждой облицовочной Плотки составляет квадратный дециметр, то полученное произведение укажет число плиток, нужное для облицовки. Это вытекает из утверждения, положенного в основу измерения площадей: площадь фигуры, составленной из непересекающихся фигур, равна сумме их площадей.

Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам, и умножалась на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту и т.п. Для вычисления площади

четырехугольника со сторонами (рис. 1.1) применялась формула (1.1)

т.е. умножались полусуммы противоположных сторон.

Эта формула явно неверна для любого четырехугольника, из нее вытекает, в частности, что площади всех ромбов одинаковы. Между тем, очевидно, что у таких ромбов площади зависят от величины углов при вершинах. Данная формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь четырехугольников, у которых углы близки к прямым.

Для определения площади

равнобедренного треугольника (рис. 1.2), в котором , египтяне пользовались приближенной формулой:

(1.2) Рис. 1.2Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой треугольника, иными словами, чем ближе вершина (и ) к основанию высоты из . Вот почему приближенная формула (1.2) применима лишь для треугольников с сравнительно малым углом при вершине.

Но уже древние греки умели правильно находить площади многоугольников. В своих «Началах» Евклид не употребляет слова «площадь», так как он под самим словом «фигура» понимает часть плоскости, ограниченную той или иной замкнутой линией. Евклид не выражает результат измерения площади числом, а сравнивает площади разных фигур между собой.

Как и другие ученые древности, Евклид занимается вопросами превращения одних фигур в другие, им равновеликие. Площадь составной фигуры не изменится, если ее части расположить по-другому, но без пересечения. Поэтому, например, можно, исходя из формул площади прямоугольника, находить формулы площадей других фигур. Так, треугольник разбивается на такие части, из которых затем можно составить равновеликий ему прямоугольник. Из этого построения следует, что площадь треугольника равна половине произведения его основания на высоту. Прибегая к подобной перекройке, находят, что площадь параллелограмма равна произведению основания на высоту, площадь трапеции – произведению полусуммы оснований на высоту.

Когда каменщикам приходится облицовывать стену сложной конфигурации, они могут определить площадь стены, подсчитав число пошедших на облицовку плиток. Некоторые плитки, естественно, придется обкалывать, чтобы края облицовки совпали с кромкой стены. Число всех пошедших в работу плиток оценивает площадь стены с избытком, число необломанных плиток – с недостатком. С уменьшением размеров клеток количество отходов уменьшается, и площадь стены, определяемая через число плиток, вычисляется все точнее.

Одним из поздних греческих математиков – энциклопедистов, труды которого имели главным образом прикладной характер, был Герон Александрийский, живший в 1 в. н. э. Будучи выдающимся инженером, он был назван также «Герон Механик». В своем произведении «Диоптрика» Герон описывает разные машины и практические измерительные инструменты.

Одна из книг Герона была названа им «Геометрика» и является своего рода сборником формул и соответствующих задач. Она содержит примеры на вычисление площадей квадратов, прямоугольников и треугольников. О нахождении площади треугольника по его сторонам Герон пишет: « Пусть, например, одна сторона треугольника имеет в длину 13 мерных шнуров, вторая 14 и третья 15. Чтобы найти площадь, поступают вот как. Сложи 13, 14 и 15; получится 42. Половина этого будет 21. Вычти из этого три стороны одну за другой; сперва вычти 13 – останется 8, затем 14 – останется 7 и, наконец, 15 – останется 6. А теперь перемножь их: 21раз по 8 даст 168, возьми это 7 раз – получится 1176, а это еще 6 раз – получится 7056. Отсюда квадратный корень будет 84. Вот сколько мерных шнуров будет в площади треугольника».